If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20=-16t^2+40t+6
We move all terms to the left:
20-(-16t^2+40t+6)=0
We get rid of parentheses
16t^2-40t-6+20=0
We add all the numbers together, and all the variables
16t^2-40t+14=0
a = 16; b = -40; c = +14;
Δ = b2-4ac
Δ = -402-4·16·14
Δ = 704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{704}=\sqrt{64*11}=\sqrt{64}*\sqrt{11}=8\sqrt{11}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-8\sqrt{11}}{2*16}=\frac{40-8\sqrt{11}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+8\sqrt{11}}{2*16}=\frac{40+8\sqrt{11}}{32} $
| Y=x^2+10x-96 | | 3(y+1)^2-5=43 | | 3x-12+6=5x+-6 | | 2x+10,5x+10=180 | | 2x+105x+10=180 | | 11=4d-1 | | -8(1-7r)=-120 | | 133=-w+272 | | 36-u=209 | | 90=-5(6-4n) | | 11/11=x/15 | | 2a^2+20a+23=5 | | 2a^2+20a+23=0 | | 4.7x+(55.3/89.029)=32.27 | | -90=2(-5r-5) | | -3/4p-2=1/4p | | 5y+50=18y-28 | | 3x-2/8+2-×/4=-1/2 | | 1/x=3-5/3x | | -90=2(-5r-5 | | 7/4x+3=2/x+2 | | 27+2z+51z-59=180 | | -12=-3u+18 | | 64^2=x | | 7/(4x-3)=2/x+2 | | X/(x+7)=5/4 | | 5(4x-7)(3x-1)2=-5 | | 21/x=9/15 | | 6.8=b7 | | x7x=1 | | 3x8−4x3=4 | | 3/1=236/k |